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ABSTRACT

This paper indicates how exponential random variables can be efficiently
used in a variety of simulation problems. One of the problems is the simu-
lation of order statistics from a normal population. W discuss the general
problem of simulating order statistics and then consider the normal case.
We start by showing how the Von-Neumann rejection approach via the exponen-
tial can be modified to become an efficient algorithm for generating a nor-
mal and then present a method for generating normal order statistics. -- /
show how to use the exponential to efficiently simulate random permutations
with weights. We-then consider the problem of simulating a 2-dimensional
Poisson process both for a homogeneous and nonhomogeneous Poisson 

process.
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SIMULATION USES OF THE EXPONENTIAL DISTRIBUTION

by

Sheldon M. Ross and Zvi Schechner

1. SIMULATING ORDER STATISTICS

Consider the problem of simulating the order statistics X( ) < X(2) <

< X(n)  from a sample of size n from the continuous distribution F.

If F is invertible, this can be accomplished by simulating U(1) < ... <

U(n)  the order statistics from a sample of n uniform (0,1) random vari-

ables and then setting X(i) = F (u(i)) To generate the U(i) , we can

simulate n uniform (0,1) random variables U1 , ..., Un  and then order them.

(It should be mentioned at this point that the time necessary for sorting the

U i's is not nearly as large as has been indicated in the simulation liter-

ature (see, for instance, [5]). The reason being that the sorting need not be

done via a general purpose procedure (such as quicksort which requires on

the order of n log n comparisons) but rather can be done with a procedure

that utilizes the fact that the values to be sorted are generated from a

uniform distribution (see 5.2.1 of [2]). This leads to an algorithm requir-

ing on the order of n comparisons.) We now present another approach for

generating U(1 ) , ..., U(n)

Let X1, ..., Xn+l be independent exponential random variables with

rate 1 and interpret Xi as the ith interarrival time of a Poisson process.

i
Now set S =  X and so S is the time of the ith event. Now apply S

J=l 
i 

e

the well-known result that given Sn+l S19 .I Sn  are distributed as the

ordered values of a set of n uniform (O,S n+) random variables. Hence,

1 n have the joint distribution of U(1 ), ... (n) That is,

n+l n+l

we have the following algorithm:

.5
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Step._1: Generate n + 1 independent exponential random variables X1, ...,

X+l •

i /n+l
Step 2: Set U xj/X ,Mi--l, ... ,n.

Remarks:

The above procedure was discussed in [4]. The exponential random vari-

ables can be generated either by using Xi = -log Ui , Ui being uniform on

(0,1), or by using any of the other known algorithms.

Suppose now, as in [6], that of the n order statistics, U(I ...

U W we only desire U(1),U(i+l) , ... , U(i+k) . To simulate this set of

k + 1 of the n order statistics, start by simulating X , a ga-a random

variable with parameters (i,1) (either by summing exponentials when i is

small or by using one of the algorithms that is more efficient than this when

i is large). Interpret X as the time of the ith event of a Poisson process

with rate 1. Now, simulate k exponential random variables with rate 1--call

them X, ... , Xk--and set S X + , X j - 1, ... , k . Now, simulate

Y , a gamma random variable with parameters (n + 1 - i - k , 1) , which will

represent the time between the (i + k)th and the (n + l)st event. Then

X Si+l Si+k
k + Y k + Y ... I + , will have the desired distribution.Si~k +YSi+k +Y .,Si+k+Y

That is, we have the following algorithm for simulating U(i), ... ,

U (i+k) A

Step 1: Generate k + 2 independent random variables X , Y , X .. Xk

with X being gamma with parameters (i,l) , Y being gamma with

parameters (n + I - i - k , 1) , and Xi being exponential with

rate 1.

• - ,, m i m m . . .. . m |I " Im - -
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Step 2: Set for j = 0,1, ... , k

x + x£

U -

(i+j) k
x + I x 2+ Y

Z=1

Even easier than simulating uniform order statistics is simulating ex-

ponentially distributed ones. Let YI. ... Yn be independent exponential

random variables with rate 1 and set

Y Y 1
(1) n

Y2Y(

Y(2 ) - ) n-i

Y.

Y(j) (J-1) + n j + "

Y(n) =  (n-l) + Yn

It then follows from the lack of memory property of exponentials plus the

fact that the minimum of independent exponentials is exponentially distrib-

uted with rate equal to the sum of the rates of the exponentials over which

we are minimizing that Y .)" Y(n) are distributed as the order sta-

tistics of a set of n independent exponentials with rate 1.

Since F- (1 - e-Y ) and F- (e Y ) both have distribution F when Y

is exponential with rate 1, it follows that we can simulate a set of n

order statistics from F by first simulating the exponential order statis-

tics Y(1) ...'I Y(n) and then either setting X( ) = F 1 (1 - e-y(i))

ics = (snF-1(e -Y (n+l-i) (
i =1, ..., n or setting X (i) F- ~ nli), i = 1, ... , n. -

Ia
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Hence, if F-I(1 - e-x) or F-l(e - ) is as easy or almost as easy to

calculate as F-l(x) , it is more efficient to first simulate exponential S

rather than uniform order statistics.

i S

I S

I So

• -i , , ,, • . . . . .. . . . II I I . . . . . . . . . i l . . .. . . . . . . . . .
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2. SIMULATING NORMAL RANDOM VARIABLES

Let Z denote a unit normal random variable and set X = IZI . The 0

Von-Neumann rejection method for simulating X , via the exponential dis-

tribution, leads to the following well-knownalgorithm:

(a) Generate independent exponentials with rate 1, Y and Y2

(b) Set if Y2 > (Y1 - 1) 2 /2 . Otherwise, return to (a).

To improve on this note that, by the lack of memory property of the exponen-

tial, it follows that if we reject in Step (b)--that is, if Y2 < (Y1 - 1) 2/2

or, equivalently, if Y1 > 1 + 2 2--then Y1 - 1 - is exponential with

rate 1. dence, we can use this as one of the exponential values in the next

iteration. In fact, even if we accept in (b), we can generate an exponential

(independent of X) by computing Y2 - (Y1 - 1)2/2 which will be exponential

with rate 1.

Hence, summing up, we have the following algorithm which generates an

exponential with rate 1 and an independent unit normal random variable:

Step 1: Generate Y, 9 an exponential random variable with rate 1.

Step 2: Generate Y2 , an exponential with rate 1.

Step 3: If Y2 - (Y1 - 1) 2/2 > 0 ,set Y = Y2 - (Y - ) 2/2 and go to 9

Step 4. Otherwise,reset Y to equal Y - I - Yr2_ and return
11 2

to Step 2.

Step 4: Generate a random number U and set

Y if U < 1/2

Z M
1-YI if U > 1/2
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The random variables Z and Y generated by the above are independent with

Z being normal with mean 0 and variance 1 and Y being exponential with

rate 1. (If we want the normal random variable to have mean p and variance

2
a , just take P + oz.)

Remarks:

(1) As is well known, the above requires a geometric distributed number of

iterations of Step 2 with mean /2e-/r -1.32

(2) The final random number of Step 4 need not be separately simulated but

rather can be obtained from the first digit of any random number used

earlier. That is, suppose we generate a random number to simulate an

exponential, then we can strip off the initial digit of this random

number and just use the remaining digits (with the decimal point moved

one step to the right) as the random number. If this initial digit is

0,1,2,3 or 4 (or 0 if the computer is generating binary digits), then

we take the sign of Z to be positive and take it negative otherwise.

(3) If we are generating a sequence of unit normal random variables, then

we can use the exponential obtained in Step 4 as the initial exponential

needed in Step 1 for the next normal to be generated. Hence, on the

average, we can simulate a unit normal by generating 1.32 exponentials

and computing 1.32 squares and .32 square roots.

2.1 Simulating Normal Order Statistics

Suppose we want to simulate the order statistics of n independent

unit normal random variables. To do so,we will generate m independent ex-

ponentials with rate I--W,,W2, ..., W --and use the above algorithm to gen-
12 m

erate a binomial distributed number of normals. However, so as to eliminate
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the need to order these resultant normals, we shall first order the exponen-

tials. We thus have the following approach:

Step 1: Generate independent exponential random variables with rate 1,

WI, ..., W and set

W (1) = W1 /m

w. ww|W~j W~jl + Wj 2, m
(j) (J-1) m j +1 ' 2 "''' "

Step 2: Set k - , =1 .

Step 3: Generate Y , an exponential random variable with rate 1.
p

Step 4: If k = m stop; otherwise,reset k to equal k + 1

(W~ - 1) 2

Step 5: If Y - 2 > 0 set X(2 ) = W(k) , reset Y to equal

2W 2Y (Wk) 1)

2

(W~k 1)2

reset X to equal k + 1 and go to Step 4. Otherwise,if Y - (k) 2 <

go to Step 3.

The result of the above will be the random variables X(1), ... , X(R)

where R - k - 1 is binomially distributed with parameters m and p = 0

A'rl2e . Since the above is equivalent to using the rejection method on the

m independent and identically distributed (iid) random variables W1,

W , it follows that the accepted variables are also iid. Hence, given R

X ... , X(R) are distributed as the order statistics of a set of R

random variables having the distribution of IZI where Z is a unit normal.

0
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However, as R need not equal n , we are not finished. If R > n , then

we need randomly choose R - n of the indices 1, ..., R and then eliminate

the variables having these indices. For instance, if n = 5 and R = 7 and

the random choice of 2 of the first 7 integers is 1 and 4, then the resultant

5 order statistics are X(i) ,i =l, ..., 5 where X(1) = X(2) X(2) -

X(3) ' X(3) = X(5) ' X(4) = X(6 ) (5) = X(7) . The best way to randomly

choose R - n of the indices 1, ..., R depends on the relative size of

R - n in comparison to R . If R - n is small compared to R ,then we

can generate random numbers U and eliminate the index [RU] + 1 continuing

until R - n distinct integers have been removed. If R - n is moderate in

comparison to R , then there is also a very simple algorithm for the selec-

tion (see Section 3.4.2 of [1]).

If R < n , then we can reapply the above steps (with a different value

for m) and then merge the two sets of order statistics. If this results in

greater than n order statistics, then we use the above technique to randomly

eliminate certain of them. If the combined set is still of size less than n ,

we again reapply the above steps (with again a different value for m) until

finally we have at least n order statistics.

The problem of choosing the appropriate value of m when k order sta-

tistics need be generated remains. As E[R] = .7576 m and /Var R = .4285 "'n,

we can be almost certain of having R > k if we take m to be approximately
4 4

equal to A k + r4k/73 . However, perhaps a value around k (which would
33

give one roughly a fifty-fifty chance of having R > n) would work out better. 0

Numerical experience will be necessary to determine the best m when the order

statistics of k of the variables ire needed.

0

. . . . . . .. . . . . . . . . . . . . . . .. . . .. . . i S
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Once the above is accomplished, we will have the order statistics of

the absolute values of n unit normals. To obtain the order statistics

of n unit normals, generate n uniforms--one for each order statistics--

and break the list of order statistics of the absolute normals into 2

parts--those having a U-value less than 1/2 and those having it greater

than 1/2--keeping the same relative ordering within the 2 lists. The re-

versed order of the second list, with each element in this list given a

negative sign, followed by the first list now yields the order statistics

of n unit normals.

Remark:

As in Section 2, the final n uniforms needed to determine the signs

of the unit normals need not actually be generated but can be "stripped off"

from the random numbers used earlier.

0

0
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3. SIMULATING RANDOM PERMUTATIONS WITH WEIGHTS

Consider an urn containing n balls--the ith of which weighs wi ,

i = 1, ..., n . The balls are sequentially removed, without replacement,

from the urn according to the following scheme. At each withdrawal, a given

remaining ball will be removed with probability equal to its weight divided

by the sum of the weights of the remaining balls. We are interested in

simulating the random permutation I = (11, ... , In ) where Ii is the index

of the ith ball to be removed.

The following algorithm for simulating I is suggested:

Step 1: Simulate independent exponential random variables El, ..., En each,0
having rate 1.

Step 2: Set X. = Ei/wi, i1, ... ,n

Step 3: Let I = (1 , ... , In) where I. is the index of the jth smallest

of X1, ..., Xn

That the above algorithm indeed works follows from the lack of memory

property of the exponential distribution in conjunction with the fact that

if Xi , i 1 , are independent exponentials with respective rates w i

then

qS
1

P X min "'' I k

1 wij

Remark:

The above can also be used in the problem of [5] which is concerned with

generating a weighted random sample of size k of the n balls.

|~



4. SIMULATING A CIRCULAR REGION OF A TWO-DIHENSIONAL POISSON PROCESS

A point process consisting of randomly occurring points in the plane is

said to be a two-dimensional Poisson process having rate A if

(a) the number of points in any given region of area A is Poisson dis-

tributed with mean XA ; and

(b) the number of points in disjoint regions are independent.

For a given fixed point 0 in the plane, we now show how to simulate 0

events occurring according to a two-dimensional Poisson process with rate

X in a circular region of radius r centered about 0 . Let Ri, i 1 ,

denote the distance between 0 and its ith nearest Poisson point, and let

C(a) denote the circle of radius a centered at 0 . Then

P{1TR' > b = P{no points in C(-7,)} = e .b

Also,

P r'- rR 2 > b R, r

= PIR 2 >
4 (b + Trr 2 ) /n R 1 =

= P no points in C (b + r2)/T) - C(r) = e

In fact, the same argument can be repeated to obtain

h

Proposition 1: With R = 0

irR2  2
-1TRR_ , i 1 , are independent exponentials with rate X

i i _0
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In other words, the amount of area that need be traversed to encompass

a Poisson point is exponential with rate A Since, by symmetry, the -

respective angles of the Poisson points are independent and uniformly dis-

tributed over (0,2T) , we thus have the following algorithm for simulating

the Poisson process over a circular region of radius r about 0 :

Step 1: Generate independent exponentials with rate 1, X1,X2, ..., stopping

at

N m 1 + ... + X n 21

min X 7r > "

Step 2: If N = 1 , stop, there are no points in C(r) . Otherwise, for

i=, ...,N - 1 ,set

Ri= +... + x .

B

Ste2 3: Generate independent uniform (0,1) random variables U, ..., UN-1

Step 4: Return the N - 1 Poisson points in C(r) whose polar coordinates

are

(Ri,2Ui) , i = 1, ..., N - I

The above algorithm which requires on average 1 + Ar 2  exponentials

and an equal number of uniform random numbers can be compared with the

procedure suggested in [3]. This latter procedure simulates points in

C(r) by first simulating N , the nuber of such points and then uses the

fact that, given N , the points are uniformly distributed in C(r) . Hence,

the procedure of [3] requires the simulation of N , a Poisson random vari-

able with mean Ar 2 and must then simulate N uniform points on C(r)
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by simulating R from the distribution FR(a) a2 /r2 and e from uniform

(0,21r) and must then sort these N uniform values in increasing order of R

The main advantage of our procedure is that it eliminates the need to sort.

The above algorithm can be thought of as the fanning out of a circle

centered at 0 with a radius that expands continuously from 0 to r . The -

successive radii at which Poisson points are encountered is simulated by

noting that the additional area necessary to encompass a Poisson point is

always, independent of the past, exponential with rate A . This technique

can be used to simulate the process over noncircular regions. For instance,

consider a nonnegative function g(x) and suppose we are interested in

simulating the Poisson process in the region between the x-axis and g with
B

x going from 0 to T (see Figure 1).

p

g(x)

0 T

FIGURE 1

To do sowe can start at the left-hand end and fan vertically to the right S

a
by considering the successive areas 5 g(x)dx . Now if X < X < ...

0 2

denote the successive projections of the Poisson points on the x-axis, then

xi

analogous to Proposition 1, it will follow that (with X0 M 0) X f g(x)dx
xi- I

B
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i > 1 , will be independent exponentials with rate 1. Hence, if we simulate

EVE 2' ... independent exponentials with rate 1, stopping at

N minn : + ... + En T g(x= > g()dx~
0

and determine X,, XN_ I by

x 1

x f g(x)dx -

0

x2

x f g(x)dx - E2

x1

XNl

X f g(x)dx- E P

XN-2

and if we now simulate U, ..., UN- 1--independent uniform (0,I) random

numbers, then as the projection on the y-axis of the Poisson point whose x-

coordinate is X i  is uniform on (O,g(Xi)) , it follows that the simulated

Poisson points in the interval are (XiUig(Xi)) , i - 1, .. , N - 1 .

Of course, the above technique is most useful when g is regular enough

so that the above equations can be solved for the Xi * For instance, if

S

. ... . .. . .. . ... . . . . . . . . . . .... ... . ...... ... ... . . . . . . . . .
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g(x) y (and so the region of interest is a rectangle), then

El + ... + Ei

Xi = y , ,., N-

and the Poisson points are

(XiyU) , i 1 .. , N- 1

oS

S

S

S
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5. SIMULATING TWO-DIMENSIONAL NONHOMOGENEOUS POISSON PROCESSES

Consider now a nonhomogeneous Poisson process with intensity function S

A(x,y) and suppose we are interested in simulating this process over a

region R . Let A be such that A(x,y) < X for all (x,y) e R . A

thinning algorithm which first simulates a Poisson process having rate X 0

over R and then accepts the resulting Poisson point (x,y) with prob-

ability A(xy) was recommended in [3]. However, we recommend a conditional

approach that first simulates N , a Poisson random variable with mean

JR] f f A(x,y)dxdy--which we assume is calculable (and which represents
(xy)c

the number of points in R)--and then chooses N points in the region R by

simulating from the density f(x,y) = . To simulate from this density,

an acceptance rejection procedure that simulates a point (X,Y) uniformly in

the region and then accepts it with probability X(X,Y)/A can be used. That

is, we have the following algorithm:

Step 1: Simulate N , a Poisson random variable with mean JR1

Step 2: Simulate a point (X,Y) uniformly distributed in R and a uniform

(0,1) variable U and accept (X,Y) if

u<A(X,Y)

If there have been a total of N points that have been accepted, stop--

otherwise, return to Step 2.

Remarks:

(i) Each random point (X,Y) will be accepted with probability IRI/AA(R)

where A(R) - Jf dydx is the area of R . Hence, the mean number of
R
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iterations of Step 2 needed to generate N accepted points is

NXA(R)/IRI. As N has mean IRI , the above thus needs on average

XA(R) iterations of Step 2.

(ii) The method for simulating (X,Y) uniformly in R depends on the

geometry of R . One possibility is to enclose R in a rectangle

and thus randomly choose a point (X,Y) in this rectangle and then

accept it if (X,Y) e R

(iii) The fanning out technique of Section 3 can still be employed when

X(x,y) is easily integrated and R is "nice." For instance,

suppose R is the region of Figure 1. Then if X < X <

denote the successive projections of the Poisson points on the

xi g(x)

x-axis, then with X0 = 0 , f X(x,y)dydx are independent

xi_ 1 0

exponentials with rate 1. Also, given a Poisson point on the line

x i , the y-coordinate is distributed according to density

g(Xi)
X(XiY) 5 X(Xiy)dy

0S

o p

S
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